Global Error Bounds for Convex Conic Problems

نویسنده

  • Shuzhong Zhang
چکیده

This paper aims at deriving and proving some Lipschitzian type error bounds for convex conic problems in a simple way First it is shown that if the recession directions satisfy Slater s condition then a global Lipschitzian type error bound holds Alternatively if the feasible region is bounded then the ordinary Slater condition guarantees a global Lipschitzian type error bound These can be considered as generalizations of previously known results for inequality systems which also follow from general results in and However the proofs in the current paper are considerably simpler Some of the results are generalized to the intersection of multiple shifted cones with di erent shifts Under Slater s condition alone a global Lipschitzian type error bound does not hold It is shown however that such an error bound holds for a speci c conic region For linear systems we establish that the sharp constant involved in Ho man s error bound is nothing but the condition number for linear programming as used by Vavasis and Ye in

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Verified Numerical Computations in Convex Programming

This survey contains recent developments for computing verified results of convex constrained optimization problems, with emphasis on applications. Especially, we consider the computation of verified error bounds for non-smooth convex conic optimization in the framework of functional analysis, for linear programming, and for semidefinite programming. A discussion of important problem transforma...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Copositive Relaxation Beats Lagrangian Dual Bounds in Quadratically and Linearly Constrained Quadratic Optimization Problems

We study non-convex quadratic minimization problems under (possibly non-convex) quadratic and linear constraints, and characterize both Lagrangian and Semi-Lagrangian dual bounds in terms of conic optimization. While the Lagrangian dual is equivalent to the SDP relaxation (which has been known for quite a while, although the presented form, incorporating explicitly linear constraints, seems to ...

متن کامل

A Feature Selection Algorithm Based on the Global Minimization of a Generalization Error Bound

A novel linear feature selection algorithm is presented based on the global minimization of a data-dependent generalization error bound. Feature selection and scaling algorithms often lead to non-convex optimization problems, which in many previous approaches were addressed through gradient descent procedures that can only guarantee convergence to a local minimum. We propose an alternative appr...

متن کامل

A Global Algorithm for Quadratic Programming with One Negative Eigenvalue Based on Successive Linear Conic Optimization and Convex Relaxation

We consider quadratic programs with a single negative eigenvalue (QP1NE) subject to linear and conic constraints. The QP1NE model covers the classical clique problem that is known to be NP-hard [26]. In this paper, by combining successive linear conic optimization (SLCO), convex relaxation and line search technique, we present a global algorithm for QP1NE which can locate a global optimal solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000